La rhizodéposition dans les horizons profonds du sol peut-elle permettre de stocker du carbone ?

Résumé

L'augmentation des émissions anthropiques de CO2 dans l'atmosphère accélère le changement climatique. Les sols contiennent trois fois plus de carbone que l'atmosphère et constituent donc un réservoir d'importance cruciale pour la régulation du climat. Il existe actuellement une réflexion pour stocker le carbone dans les couches profondes du sol, notamment via la rhizodéposition des plantes. Nous avons donc mené une expérience au CEREEP-Ecotron Ile-de-France pour quantifier les apports, et la persistance, du carbone rhizodéposé par les plantes à l'aide d'un marquage continu au 13C-CO2. Pour ce faire, deux variétés de blé aux systèmes racinaires contrastés ont été plantés dans des mésocosmes et cultivés pendant une saison de croissance complète et sous atmosphère enrichie en 13C. Nos objectifs étaient de quantifier le flux de carbone de l'atmosphère vers le sol et de mesurer sa persistance à court terme. Nos résultats suggèrent que la variété ancienne Plantahof rhizodépose une quantité plus élevée de carbone par rapport à la variété récente Nara notamment en profondeur. Cependant, le carbone apporté au sol par ces deux variétés a conduit à des pertes par minéralisation et des priming effects similaires. Ainsi, le bilan total du carbone était plus affecté par la profondeur du sol que les variétés utilisées dans l'étude. Par ailleurs, j'ai étudié, à partir d'une analyse bibliographique, la distribution selon la profondeur des activités enzymatiques hydrolases et oxydoréductases impliquées dans les cycles du carbone, de l'azote et du phosphore en fonction de la profondeur du sol. Les résultats de cette analyse ont montré que les profils d'activité dépendaient très fortement de la façon dont ces activités étaient exprimées, avec des activités qui diminuent avec la profondeur lorsqu'exprimées par masse de sol alors qu'elles sont plutôt stables, voire augmentent, lorsque exprimé par rapport à la biomasse microbienne. Pris dans leur ensemble, ces résultats montrent que la prise en compte du fonctionnement sur l'intégralité de la colonne de sol est indispensable pour comprendre la dynamique du carbone dans les écosystèmes terrestres.


Auteurs, date et publication :

Auteurs Fatima El Mekdad , Naoise Nunan , Xavier Raynaud

Date : 2023


Catégorie(s)

#CNRS #Ecotron IleDeFrance #ENS